LIMITS WORKSHEET #4

$$f(x) = \begin{cases} \frac{1}{x^2}, & x < -1 \\ 2, & -1 \le x < 1 \\ 3, & x = 1 \\ x+1, & 1 < x \le 2 \\ \frac{-1}{(x-2)^2}, & x > 2 \end{cases}$$

1. Sketch a graph of the function f(x)

2.	Using your	graph from	problem 1	. determine	the value of	of each of t	he following limits:
	- 0,	0		,			

a. $\lim_{x \to -1^{-}} f(x) =$	b. $\lim_{x \to -1^+} f(x) =$	c. $\lim_{x \to -1} f(x) =$	d. $\lim_{x \to 1^{-}} f(x) =$	e. $\lim_{x \to 1^+} f(x) =$	f. $\lim_{x \to 1} f(x) =$
g. $\lim_{x \to 2^-} f(x) =$	h. $\lim_{x \to 2^+} f(x) =$	i. $\lim_{x \to 2} f(x) =$	j. $\lim_{x \to -3} f(x) =$	k. $\lim_{x \to 5} f(x) =$	1. $\lim_{x \to 1.5} f(x) =$

For problems 3–8, use the graph to test each function for continuity at the indicated value of x.

3.	 3a) Is f(x) continuous at x = -1? Why or why not? 3b) What kind(s) of discontinuity does f(x) have? 3c) On what open interval(s) is f(x) continuous?
4.	 4a) Is f(x) continuous at x = 3? Why or why not? 4b) What kind(s) of discontinuity does f(x) have? 4c) On what open interval(s) is f(x) continuous?
5. $ \begin{array}{c} 6^{-} \\ 5^{-} \\ 4^{-} \\ 7^{-} \\ 4^{-} \\ 7^{-} \\ 1^{-} \\ -1^{-} \\ -2^{-} \\ 7^{-} \\ $	 5a) Is f(x) continuous at. x = 2? Why or why not? 5b) What kind(s) of discontinuity does f(x) have? 5c) On what open interval(s) is f(x) continuous? 5d) How would you remove the discontinuity?

Find each one-sided limit:

9. $\lim_{x \to 2^+} \frac{x-3}{x-2} =$	10. $\lim_{x \to 0^-} \frac{ \mathbf{x} }{\mathbf{x}} =$	11. $\lim_{x \to 3^+} \frac{x-5}{x^2-9} =$	12. $\lim_{x \to \pi^-} \frac{\cos x}{x} =$	13. $\lim_{x \to 3^{-}} \frac{x^2 + 2x - 3}{x^2 + x - 6} =$
---	--	--	---	---